23. Rotationsdispersion III Rotationsdispersion von Komplexen des dreiwertigen Chrom und Kobalt

von Th. Bürer

(4. XII. 62)

1. Einleitung

Das grosse Interesse, das gegenwärtig der Messung der Rotationsdispersion von optisch aktiven Metallkomplexen entgegengebracht wird, lässt sich summarisch auf folgende Gründe zurückführen:

Für die Prüfung und Spezialisierung der Theorie der optischen Aktivität sind die experimentellen Daten auf diesem Gebiete wertvoll, da in den Metallkomplexen meistens relativ hohe Molekelsymmetrien auftreten. Ein wesentlicher Aspekt besteht in der Untersuchung der Korrelation zwischen Rotationsdispersion und absoluter Konfiguration. Im weiteren lassen sich wertvolle Informationen gewinnen über die Polarisation von Elektronenübergängen, die bei der Interpretation der Absorptions-Spektren wesentlich sind. Für die Untersuchung der Kinetik der Razemisierung und von photochemischen Reaktionen optisch aktiver Komplexe ist die Kenntnis der Rotationsdispersion (RD) oder Zirkulardichroismus (CD) praktisch unerlässlich. Während die Darstellung von Komplexen und ihre Trennung in optische Antipoden in den letzten rund 50 Jahren systematisch weiterentwickelt wurden, blieb die Messtechnik praktisch bis vor wenigen Jahren auf dem Stand von etwa 1930. Heute existieren jedoch Instrumente für die Messung von RD und CD im Sichtbaren und nahen Ultraviolett, die in der Handhabung so einfach sind wie die entsprechenden Instrumente für die Absorptionsmessungen. Der wesentliche Fortschritt liegt dabei nicht so sehr in der Präzision als vielmehr in der Einfachheit und Schnelligkeit.

Es scheint uns daher nützlich, zunächst einen Überblick zu geben über die u. W. bis heute (Stand Ende 1961) veröffentlichten Daten über Rotationsdispersion von Metallkomplexen. Wir beschränken uns vorläufig auf die Verbindungen des dreiwertigen Chrom und Kobalt. Im Anschluss daran geben wir die Resultate einiger eigenen Messungen, die nicht durchwegs neu sind, aber in den meisten Fällen im kurzwelligen Bereich etwas erweitert wurden.

2. Standardisierung

Eine kurze und vereinfachte Zusammenstellung der wesentlichen Formeln aus der Theorie der optischen Aktivität ist notwendig zur Definition der Standard-Messgrössen.

21. Messgleichungen (Definitionen).

Drehung:

$$\alpha = \frac{\pi}{\lambda} (n_l - n_r) \quad \text{rad cm}^{-1} \tag{1}$$

Elliptizität:
$$\theta = \frac{1}{4} (k_l - k_r) \text{ rad } \text{cm}^{-1}$$
 (2)

243

spezifische Drehung: $[\alpha] = \frac{\alpha}{c'} \frac{1800}{\pi}$ grad dm⁻¹ cm³ gr⁻¹ (3)

$$[M] = \frac{[\alpha] M}{100} = \alpha \frac{18}{\pi} \frac{M}{c'} \quad \text{grad } \text{cm}^{-1} \text{ Mol}^{-1} \text{ l} \cdot 10^2$$
(4)

molare Elliptizität:

molare Drehung:

$$[\theta] = \theta \frac{18}{\pi} \frac{M}{c'} = 3300 \left(\varepsilon_l - \varepsilon_r\right) \text{ grad } \text{cm}^{-1} \text{ Mol}^{-1} \cdot 10^2 \quad (5)$$

dabei bedeuten:

 n_l, n_r : Brechungsindex für links- resp. rechts-zirkular-polarisiertes Licht.

- k_l, k_r : Absorptions index für links- resp. rechts-zirkular-polarisiertes Licht.
- $\varepsilon_l, \varepsilon_r$: Absorptionskoeffizient für links- resp. rechts-zirkular-polarisiertes Licht.
- c': Konzentration in g/cm³.
- c: Konzentration in Mol/l.
- M: Molmasse in g/Mol.

 λ : Wellenlänge.

22. Grössen aus der quantenmechanischen Theorie. Für den Übergang vom Zustand N zum Zustand V folgt¹)²):

Rotationsstärk::
$$R_{NV} = \frac{e^2}{2 m_e c} Im (Q_{NV} L_{NV})$$
(6)

Dipolstärke:

$$D_{NV} = e^2(Q_{NV} Q_{VN}) \tag{7}$$

mit
$$Q_{op}$$
 Ortsvektoroperator $Q_{NV} = \int \psi_N^* Q_{op} \psi_V d\tau$
 L_{op} Drehimpulsoperator $L_{NV} = \int \psi_N^* L_{op} \psi_V d\tau$

(über allenfalls entartete Zustände ist zu summieren).

23. *Relationen*. Rotations- und Dipolstärke stehen in folgendem Zusammenhang mit den messbaren Grössen³):

Die Numerierung der Übergänge erfolgt hinfort mit der Laufzahl k:

$$D_{k} = \frac{3 h c}{8 \pi^{3} N_{1}} \int_{0}^{\infty} \frac{k_{k}(\lambda)}{\lambda} d\lambda \cong 0.918 \cdot 10^{-38} \int_{0}^{\infty} \frac{\varepsilon_{k}}{\lambda} d\lambda \quad \text{erg molekel}^{-1} \text{ cm}^{-3}$$
(8)

$$R_{k} = \frac{3 h c}{8 \pi^{3} N_{1}} \int_{0}^{\infty} \frac{\Theta_{k}(\lambda)}{\lambda} d\lambda \cong 0,696 \cdot 10^{-42} \int_{0}^{\infty} \frac{[\Theta_{k}(\lambda)]}{\lambda} d\lambda$$

$$\cong 0,229 \cdot 10^{-38} \int_{0}^{\infty} \frac{[\varepsilon_{l}(\lambda) - \varepsilon_{r}(\lambda)]_{k}}{\lambda} d\lambda \quad \text{erg molekel}^{-1} \text{ cm}^{-3}$$
(9)

 $N_{\rm l}={\rm Anzahl}$ Molekeln pro ${\rm cm^3}$

- ²) E. U. CONDON, Rev. mod. Physics 9, 434 (1947).
- A. MOSCOWITZ, in C. DJERASSI, Optical Rotatory Dispersion, Chap. 12, McGraw-Hill, New York (1960).

¹) W. MOFFIT, J. chem. Physics 25, 1189 (1956).

Zwischen [M] und $[\Theta]$ besteht folgender Zusammenhang (KRAMERS-KRONIG-Relation)⁴): ∞

$$[M_k(\lambda)] = \frac{2}{\pi} \int_0^\infty [\Theta_k(\lambda') \frac{\lambda'}{\lambda^2 - \lambda'^2} d\lambda'$$
(10)

Als Anisotropiefaktor wird definiert⁵):

$$g_{k}(\lambda) = \frac{\left[\epsilon_{l}(\lambda) - \epsilon_{r}(\lambda)\right]_{k}}{\epsilon_{k}(\lambda)}$$
(11)

24. Näherungen. Zur Vereinfachung kann angenommen werden, dass Absorption und Elliptizität durch GAUSS'sche SHAPE-Funktionen beschrieben werden können⁶):

$$\varepsilon_{k}(\lambda) = \varepsilon_{k}^{0} \exp\left\{-(\lambda - \lambda_{k})^{2}/\varDelta_{k}^{2}\right\}$$

$$\left[\Theta_{k}(\lambda)\right] = \left[\Theta_{k}^{0}\right] \exp\left\{-(\lambda - \lambda_{k})^{2}/\varDelta_{k}^{2}\right\}$$
(12)

Die Integration nach (8), (9) gibt:

$$D_k \cong 0.918 \cdot 10^{-38} \sqrt{\pi} \frac{\Delta k}{\lambda k} \varepsilon_k^0 \tag{13}$$

$$R_{k} \cong 0.696 \cdot 10^{-42} \sqrt{\pi} \frac{\Lambda k}{\lambda k} \left[\Theta_{0}^{k} \right]$$
(14)

 ε_{k}^{0} , $[\Theta_{k}^{0}]$ Absorptions- resp. Elliptizitätsmaximum.

 λ_k zugehörige Wellenlänge.

 Δ_k Wellenlängenabstand zwischen ε_k^0 und $1/e \varepsilon_k^0$ resp. $[\Theta_k^0]$ und $1/e [\Theta_k^0]$.

Zweckmässigerweise wird statt Δ_k die Halbwertsbreite d_k eingeführt gemäss

$$\varepsilon_k \left(\lambda_k \pm \frac{1}{2} \, \mathrm{d}_k \right) = \frac{1}{2} \, \varepsilon_k^0 \quad \text{und analog für} \quad [\Theta_k],$$
$$D_k \simeq 0.93 \cdot 10^{-38} \, \varepsilon_k^0 \, d_k / \lambda_k \tag{15}$$

daraus folgt:

$$R \sim 0.74 \cdot 10^{-42} \left[\Theta_{k}^{0} \right] d_{k} / \lambda.$$
(16)

$$\mathbf{R}_{k} = \mathbf{0}, \mathbf{H} = \mathbf{0} \quad \begin{bmatrix} \mathbf{0}_{k} \end{bmatrix} \mathbf{u}_{k} / \mathbf{k}_{k} \tag{10}$$

Unter Verwendung der KRAMERS-KRONIG-Relation (10) bei Annahme von GAUSS-Banden (12) kann die Rotationsdispersionskurve $[M_k(\lambda)]$ analytisch dargestellt werden⁶), dabei resultiert:

$$A_{k} \cong 4030 \ (\varepsilon_{l} - \varepsilon_{r})_{k}^{0} = 1,22 \left[\Theta_{k}^{0}\right]$$

$$R_{k} \cong 0,55 \cdot 10^{-42} A_{k} d_{k}^{\prime} / \lambda_{k}$$

$$(17)$$

- A_k Amplitude der molaren Drehung, d. h. Drehungsabstand zwischen Maximum und Minimum des Cotton-Effektes
- d' Wellenlängenabstand zwischen Maximum und Minimum des COTTON-Effektes

Falls Δ_k und λ_k für Absorption und Elliptizität identisch sind, gilt für den Anisotropiefaktor:

$$g_k(\lambda_k) = \frac{4R_k}{D_k} \cong \frac{(\varepsilon_l - \varepsilon_r)_k^0}{\varepsilon_k^0} \cong \frac{1}{4030} \frac{A_k}{\varepsilon_k^0}$$
(18)

244

⁴⁾ A. Moscowitz, Tetrahedron 13, 48 (1961).

⁵) W. KUHN, Trans. Farad. Soc. 46, 293 (1930).

⁶) A. Moscowitz, Doctoral Thesis, Harvard University 1957.

Ein COTTON-Effekt kann somit im Rahmen dieser Näherung hinreichend charakterisiert werden durch Angabe der Amplitude, des Vorzeichens (Konvention: +CE = positiveres Extremum auf der langwelligen Seite) und des Wellenlängenabstandes zwischen Maximum und Minimum.

25. Terminologie. Wir verwenden hinfort folgende Bezeichnungen uud Abkürzungen:

Bezeichnung deutsch (englisch)	Abkürzung Text Formel		Masseinheit, Bemerkungen (molare)					
Rotationsdispersion (rotatory dispersion)	RD	$[M(\lambda)]$ $[\Phi(\lambda)]$	grad cm ⁻¹ Mol ⁻¹ l \cdot 10 ² Formel (4)					
Elliptizität (ellipticity)	El	$[\Theta(\lambda)]$	grad cm ⁻¹ Mol ⁻¹ l \cdot 10 ² Formel (5)					
Zirkulardichroismus (circular dichroism)	CD	$\varepsilon_l - \varepsilon_r(\lambda)$	cm ⁻¹ Mol ⁻¹ l Formel (5)					
Cotton-Effekt CE cotton effect)			Im Rahmen der RD charakterisierbar durch Vor- zeichen, Amplitude und Breite, Formel (17)					

3. Veröffentlichte Daten

In der Tabelle sind die Komplexe des dreiwertigen Chrom und Kobalt aufgezählt, von denen publizierte Messwerte der Rotationsdispersion gefunden wurden. Soweit möglich wurde eine grobe Charakterisierung der einzelnen Verbindungen versucht durch ungefähre Angaben über den dominanten Cotton-Effekt und die langwelligere Absorptionsbande. Zur Vereinfachung der Übersicht wurden folgende Angaben weggelassen:

- Kation resp. Anion der zweiten Sphäre (in der Annahme, dass diese die Messwerte nicht wesentlich beeinflussen).
- Bezeichnung *cis*. Alle aufgeführten Daten beziehen sich auf *cis*-Komplexe. Für Daten der *trans*-Komplexe mit optisch aktiven Liganden siehe Original-Literatur.
- Bezeichnung d, l, +, etc. des Komplexes.
- Genaue Spezifizierung von doppelter optischer Isomerie bei Komplexen mit optisch aktiven Liganden.
- Aufbau der Komplexe mit Aminosäure-Liganden.

Die Bezeichnung der Liganden erfolgt nach LEWIS & WILKINS?). Zusätzlich verwenden wir die Abkürzungen:

ox	-OOC-COO-
malo	-OOC-CH ₂ -COO-
tartr	-OOC-(CHOH) ₂ -COO-
Y	EDTA-4 H+

cptdin 1,2-Diaminocyclopentan

Co³⁺ und Cr³⁺ Komplexe, von denen RD-Daten veröffentlicht sind

[A] Amplitude des dominanten CE in grad molare Drehung

 λ_0 ' Zentrum des dominanten CE (Mitte zwischen Max. und Min.) in nm

⁷) J. LEWIS & R. G. WILKINS, Modern Coordination Chemistry, Interscience Publishers 1960, p. xiii.

d'Abstand zwischen Max. und Min. des dominanten CE in nm

Absorptionskoeffizient und Wellenlänge des Bandenmaximums in $Mol^{-1} l cm^{-1}$ bzw. nm ε₀, λ₀

Überlagerung von 2 benachbarten CE vergleichbarer Grösse mit verschiedenen Vorzeichen + --

. + + * Überlagerung von 2 benachbarten CE vergleichbarer Grösse mit gleichen Vorzeichen

doppelte opt. Isomerie vgl. Originalliteratur

Verbindung (Ion)	Literatur	[<i>A</i>]	Bem.	λ ₀ '	ď	ε ₀	λ ₀
[Co en ₃] ³⁺	10) 17) 24) 30) 31) 33)	7 500		490	55	80	470
$[Co tn_3]^{3+}$	24)	400		480	50	80	490
[Co pn ₃] ³⁺	10) 24)	_	*				
$[Co bn_{\sigma}]^{3+}$	24)		*				
[Co cptdin_] ³⁺	13)	4000		480	60		
$[Co ox_3]^{3-}$	15) 17) 14) 31)	18000		620	70	170	600
$[Co tartr_{a}]^{3-}$	24)	(2000)	+	690	80		630
[00 0	,	(2000)		610	80		000
[Co.oca_] ³⁺	11)	22,000		590	100		
[Co acac ₃]	³¹)			0,00	200		
[Co en, i-bn] ³⁺	²⁴)					·	
[Co en cptdin] ³⁺	13)	7000	*	500	60		
[Co en SO ₃]+	24)	< 200					
$[Co en_a CO_a]^+$	16 30)	7 600		525	70	140	510
$[Co en_{2} ox]^{+}$	16 30 33)	10,000		520	70	105	500
$[Copp, SO]^+$	21)	10000	*	240	10	105	500
$[\cos pn_2 \cos_3]$	19)	5000	*	515	00		
$[Co en ox]^{-}$	29) 33)	0,000		580	50 60	00	540
$\begin{bmatrix} Co en ox_2 \end{bmatrix}$)) 29)	14000		500	70	90	540
$[CO \text{ en maio}_2]$)	14000	+	590	70	90	540
[Colon or]~	33\	11000	+ -	520	70	145	540
	,		- <u></u> .				
$[\text{Co en}_2 (\text{NH}_3)_2]^{3+}$	¹⁶) ³⁰)	2200		500	70	70	47 0
$[Co en_{2} (NO_{2})_{2}]^{+}$	⁹) ¹⁶) ³⁰) ³³)	5 500		460	60	160	440
$[Co en_{9} F_{9}]^{+}$	22)	_					
$[Co en_a Cl_a]^+$	16) 26) 30)	3000	+	610	90	80	530
		3 500	+	530	80		
$[Co lpn, (NH_2)]^{3+}$	21)	_	*				
$\begin{bmatrix} Co \ln n_{a} \\ NO_{a} \end{bmatrix}_{a}^{2}$	21)	_	*				
$[Co lpn_{2} (NCS)_{2}]^{+}$	21)	_	*				
$[Co lpn, Cl_1]^+$	19)	2000	+	590	90		
[00 1pmg 0.2]	1	2 500	- 	520	70		
$[{\rm Co}\; 1\text{-}{\rm cptdin}_{2}\; {\rm Cl}_{2}]^+$	¹³)	2300	*	520	10		
[Co en bn $(NO_2)_2$] ⁺	23)		*				
$[\text{Co en pn } (\text{NO}_2)_2]^+$	8) 11)	(1800)	*				
[Co en ₂ NH ₃ NO ₂] ²⁺	16) ³⁰)	>2000		470	80	100	450
[Co en, NH, NCS] ²⁺	16)						
Co en, NH, H,O] ³⁺	16) 30)	1000	+ +	520	80	80	490
	, ,	1 000	+ +	450			
[Co en, NH, F] ²⁺	²²)	(1500)					
$[Co en_{a}^{2} NH_{a} Cl]^{2+}$	16) 21) 26)	900	+ +	560	60	65	530
······································	, , ,	800		490	70	05	550
[Co en, NH- Brl ²⁺	16) 30)	800		560	80	70	540
[00 0m2 1113 D1]	1 1	800		470	60	10	540
[Coen NO NCS]+	16) 30)	1000	+ +	500	70	265	175
$[Co en NO H O]^2 +$	<i>i j</i> 16) 30)	2 500		500	10	203	413 500
$[\bigcirc \square_2 \square_2 \square_2 \bigcirc]^{-+}$		4 500		505	90		500

Verbindung (Ion)	Literatur	[A]	Bem.	λ,'	ď	ε_0	λ_0
[Co en ₂ NO ₂ F] ⁺	22)	(1400)					
[Co en ₂ NO ₂ Cl]+	16) 26) 30)	1 500	+ +	540	80	95	505
[Co en ₂ NO ₂ Br]+	16) 30)	1 300	+ +	560	80	85	520
[Co en ₂ NCS Cl]+	16) ³⁰)	2400	+	570	80	165	500
-		4000	+	490	90		
$[Co en_2 Cl H_2 O]^{2+}$	16)	3 200		510	80	90	530
$[\text{Co en}_2 \text{ Cl Br}]^+$	¹⁶) ²⁴) ³⁰)	2700	+ -	630	80	95	540
		3400	+ -	530	100	95	540
$[\mathrm{Co}\;\mathrm{dpn}_2\;\mathrm{NH_3}\;\mathrm{Cl}]^{2+}$	²¹)		*				
[Co Y Cl] ²	²⁶) ³³)	4 000		570	80	220	570
[Co Y NO ₂] ²⁻	26) 33)	3 0 0 0	+ -	590	90	(100)	(580)
		3 500	+ -	520	70	225	500
[Co penten OH] ²⁺	³³)	3 200		490	7 0	170	510
[Co penten H Br] ³⁺	33)	1800		490	80	170	540
[Co Y]-	26) 28) 33)	6 500	+ -	580	70	320	530
	, , , ,	6000	+ -	510	90		
[Co penten] ³⁺	³³)	16000		510	60	215	480
[Co Aminosäure ₃]	¹²) ¹⁸) ²¹) ³³)		*		<u> </u>		
[Cr en ₂] ³⁺	17) 24) 31) 33)	6000		455	70	70	460
$[Cr tn_3]^{3+}$	24) 33)	1 300		480	7 0	60	460
[Cr ox ₃] ³⁻	17) 31) 32) 33)	14000		550	80	75	575
[Cr tartr]3-	14) 32) 33)	18000		565	90	66	595
[Cr oca] ³⁺	11)	5 000					
[Cr malo ₃] ³	9)	-					
[Cr en _a ox] ¹⁺	16)	8 200		480	80	100	495
[Cr phen ox_]	33)	11000		520	90	80	540
[Cr bipy ox ₂]-	³³)	6000		510	80	95	530
[Cr en, Cl,]+	16) 19) 21) 33)	3000	+	590	80	75	520
- <i>u u-</i>		3000	+	520	80		
$[Cr dpn_{2}(NCS)_{2}]^{+}$	¹⁹) ²¹)						
[Cr lpn, Cl,]+	19) 21)						
$[Cr ox_2 (H_2O)_3]^-$	27)						
[Cr Aminosäure ₃]	¹²)		*				

⁸) A. WERNER, Helv. 1, 5 (1918).

- ⁹) F. M. JAEGER, Rec. trav. chim. Pays-Bas 38, 170 (1919); Bull. Soc. Chim. France [4] 33, 853 (1923).
- ¹⁰) A. P. Smirnoff, Helv. 3, 177 (1920).
- ¹¹) J. LIFSCHITZ, Z. physik. Chem. 105, 27 (1923).
- ¹²) J. LIFSCHITZ, Z. physik. Chem. 114, 485 (1925).
- ¹³) F. M. JAGER & H. B. BLUMENDAHL, Z. anorg. Chem. 175, 161 (1928).
- ¹⁴) W. KUHN & Z. SZABO, Z. physik. Chem. B15, 59 (1931).
- ¹⁵) C. H. JOHNSON & A. MEAD, Trans. Farad. Soc. 29, 625 (1933).
- ¹⁶) J. P. MATHIEU, C. r. Séances hebd. Ac. Sc. 199, 278 (1934); Bull. Soc. chim. France [5] 3, 463 (1936).
- ¹⁷) J. P. MATHIEU, J. chim. phys. 33, 78 (1936).
- ¹⁸) J. P. MATHIEU, Bull. Soc. chim. France [5] 6, 873 (1939).

4. Eigene Messungen

41. *Resultate*. In den Figuren 1 bis 16 sind die Resultate unserer Messungen von RD und Absorption im Bereich der *d*-Elektronen-Übergänge dargestellt.

42. Messtechnik. Die Messung der RD erfolgte auf einem automatischen Spektralpolarimeter nach Halbschattenprinzip³⁴)³⁵) unter Verwendung einer 1 kWatt Xenonlampe (OSRAM XBO 1001), eines ZEISS-Monochromators PMQ II (0,4 mm Spaltbreite im ganzen Messbereich) und eines Photomultipliers Typ 1P28 (BECKMAN/RCA). Empfindlichkeit 0,005 bis 0,01 Winkelgrad.

Lösungsmittel: Wasser.

Schichtdicke: 1 cm.

Konzentration: Diese wurde derart gewählt, dass die Transmissions-Minima zwischen 5 und 30% lagen. Zur Erweiterung ins kurzwellige Gebiet wurde anschliessend die Messung mit 10facher Verdünnung wiederholt. Angabe in Millimol pro Liter (mM).

Die Messung des Absorptionsspektrums erfolgte auf einem BECKMAN-DK-2-Spektrographen unter gleichen Bedingungen.

5. Interpretation

51. Allgemeines. In oktaedrischen Komplexen des dreiwertigen Kobalt und Chrom treten 3d-Elektronen-Übergänge vom Typ $t_{2g} \rightarrow e_g$ auf:

$$\operatorname{Cr}^{3+}: {}^{4}A_{2g} \longrightarrow {}^{4}T_{1g}, {}^{4}T_{2g}; \qquad \operatorname{Co}^{3+}: {}^{1}A_{1g} \longrightarrow {}^{1}T_{2g}, {}^{1}T_{1g}$$

Diese sind Spin-erlaubt aber LAPORTE-verboten; sie werden aktiv durch Kopplung mit Schwingungen (vibronic transitions). In optisch aktiven Komplexen liegt notwendigerweise ein statisches Störfeld tieferer Symmetrie als O_h vor (z. B. O, T, D_n, C_n) das die Durchbrechung der LAPORTE-Regel gestattet³⁶)³⁷); gleichzeitig wird mindestens eine der beiden Absorptionsbanden optisch aktiv. Die effektive Molekel-Symmetrie solcher Komplexe (Koordinationszahl 6 und optisch inaktive Liganden vorausgesetzt) ist höchstens D_3 (z. B. [Co en₃]), meistens aber nur C_2 oder C_1 (z. B.: [Co penten], [Co en₂Cl NO₂]).

52. Molekelsymmetrie D_3 . Grundsätzlich würde ein statisches Kristallfeld (ein System von Punktladungen oder Dipolen im Sinne der Kristallfeldtheorie) der

- ¹⁹) J. C. BAILAR & J. P. MCREYNOLDS, J. Amer. chem. Soc. 61, 3199 (1939).
- ²⁰) P. PFEIFFER, Ber. deutsch. chem. Ges. 1944 A, 59.
- ²¹) T. D. O'BRIEN, J. P. MCREYNOLDS & J. C. BAILAR, J. Amer. chem. Soc. 70, 749 (1948).
- ²²) W. R. MATOUSH & F. BASOLO, J. Amer. chem. Soc. 78, 3972 (1956).
- ²³) W. E. COOLEY, C. F. LIU & J. C. BAILAR, J. Amer. chem. Soc. 81, 4189 (1959).
- ²⁴) F. WOLDBYE, US Army Report DA-91-508-EUC-246 (1959).
- ²⁵) M. BILLARDON, C. r. Séances hebd. Ac. Sc. 251, 2320 (1960).
- ²⁶) J. HIDAKA, Y. SHIMURA & R. TSUCHIDA, Bull. chem. Soc. Japan 33, 847 (1960).
- 27) R. E. HAMM, R. KOLLRACK, G. L. WELCH & R. H. PERKINS, J. Amer. chem. Soc. 83, 340 (1961).
- ²⁸) D. H. Busch & D. W. Cooke, J. inorg. nucl. Chemistry 23, 145 (1961).
- ²⁹) J. HIDAKA, Y. SHIMURA & R. TSUCHIDA, Bull. chem. Soc. Japan 35, 567 (1962).
- ³⁰) J. G. BRUSHMILLER, E. L. AMMA & B. E. DOUGLAS, J. Amer. chem. Soc. 84, 111, 3227 (1962).
- ³¹) T. S. PIPER, J. Amer. chem. Soc. 83, 3908 (1961).
- ³²) A. J. McCaffery & S. F. Mason, Trans. Farad. Soc., im Druck.
- ³³) Eigene Messungen.
- ³⁴) TH. BÜRER, H. KOHLER & HS. H. GÜNTHARD, Helv. 41, 2216 (1958); TH. BÜRER & HS. H. GÜNTHARD, Helv. 43, 810 (1960).
- ³⁵) Wir danken Herrn P. Käser für die Durchführung der Messungen.
- ³⁶) C. J. BALLHAUSEN & W. MOFFI, J. inorg. nucl. Chemistry 3, 178 (1956).
- ³⁷) T. S. PIPER & R. L. CARLIN, J. chem. Physics 35, 1809 (1961).

³⁸) Wir danken den Herren Prof. BROOMHEAD, Prof. DWYER und Prof. SCHWARZENBACH für die Überlassung der Substanzen.

³⁹) F. P. DWYER, I. K. REID & F. L. GARVAN, J. Amer. chem. Soc. 83, 1285 (1961).

⁴⁰⁾ F. P. DWYER, F. L. GARVAN & A. SHULMAN, J. Amer. chem. Soc. 81, 290 (1959).

Symmetrie O oder T genügen zur Erklärung der optischen Aktivität der d-Elektronenübergänge von Komplexen der Übergangsmetalle mit der Molekelsymmetrie D_3 Unter Verwendung von p-(oder f-)Orbitalen der Liganden lässt sich jedoch nur ein Kristallfeld der Symmetrie D_3 beschreiben. Die hierbei resultierende Aufspaltung der T_1 - und T_2 -Terme nach:

⁴¹) Inorganic Syntheses, Vol. 6, p. 195, McGraw-Hill (1960).

⁴²) J. RÉTEY, Diplomarbeit ETH, Zürich 1959.

⁴³⁾ F. P. DWYER & F. L. GARVAN, J. Amer. chem. Soc. 80, 4480 (1958).

Fig. 9. l [Co penten] J₃, 2H₂O c = 2,3 mM, Präp.: EMMENEGGER³⁸)⁴⁴)Fig. 10. d [Co penten] J₃, 2H₂O c = 3 mM, Präp.: EMMENEGGER³⁸)⁴⁴)Fig. 11. d [Co penten OH] J₂ c = 4,2 mM in 0,1n NaOH, Präp.: EMMENEGGER,
aus d [Co penten] J₃³⁸)⁴⁴)Fig. 12. d [Co pentenH Br]Br₃ c = 3,8 mM, Präp.: EMMENEGGER³⁸)⁴⁴), aus d [Co penten] J₃

muss bei der Berechnung der Rotations-Stärken berücksichtigt werden³²)⁴⁹)⁵⁰)⁵¹). Dabei lassen sich folgende Relationen herleiten:

Co³⁺:
$$R ({}^{1}A_{1} \rightarrow {}^{1}A_{2}) = -R ({}^{1}A_{1} \rightarrow {}^{1}E_{a})$$

 $|R ({}^{1}A_{1} - {}^{1}E_{b})| \ll |R ({}^{1}A_{1} - {}^{1}E_{a})|$
 $R ({}^{1}A_{1} - {}^{1}A_{1}) = 0$

- 44) F. P. EMMENEGGER, Dissertation ETH Zürich, in Vorbereitung.
- ⁴⁵) E. TROXLER, Diplomarbeit ETH, Zürich 1960.
- 46) J. A. BROOMHEAD, Austr. J. Chemistry 15 (1962), im Druck.
- 47) R. D. Souza, Diplomarbeit, ETH Zürich, 1960.
- 48) A. WERNER, Ber. deutsch. chem. Ges. 44, 3132 (1911).
- ⁴⁹) S. SUGANO, J. chem. Physics 33, 1883 (1960).
- ⁵⁰) H. POULET, J. Chim. Phys. 59, 584 (1962).
- ⁵¹) N. K. Hammer Molec. Physics 5, 339 (1962).

Fig. 13. d[Cr tn₃]J₃, 1 H₂O Fig. 14. l[Cr en₂ Cl₂]Cl, 1 H₂O Fig. 15. d[Cr phen ox₂]K, 4 H₂O Fig. 16. l[Cr bipy ox₂]K, 3 H₂O

c = 7,1 mM, Präp.: nach WOLDBYE²⁴)⁴³)
 c = 8,2 mM, Präp.: nach WERNER⁴⁵)⁴⁶)
 c = 4,5 mM, Präp.: Вкоомнелд³⁶)⁴⁴)
 c = 2,4 mM, Präp.: Вкоомнелд³⁶)⁴⁴)

Cr³⁺:
$$R ({}^{4}A_{2} \rightarrow {}^{4}A_{1}) = -R ({}^{4}A_{2} \rightarrow {}^{4}E_{b})$$

 $|R ({}^{4}A_{2} \rightarrow {}^{4}E_{a})| \ll |R ({}^{4}A_{2} \rightarrow {}^{4}E_{b})|$
 $R ({}^{4}A_{2} \rightarrow {}^{4}A_{2}) = 0$

d. h. die langwellige Absorptionsbande wird aufgespalten in zwei Anteile, deren Rotationsstärke gleichen Betrag, aber verschiedenes Vorzeichen besitzt. Die kurzwellige Absorptionsbande trägt nur unwesentlich zur optischen Aktivität bei. Diese Aufspaltung der langwelligen Bande ist im allgemeinen wesentlich geringer als die Halbwertsbreite. Durch polarisierte Absorptionsmessungen an orientierten Einkristallen erhielt PIPER³⁷) für [Cr ox₃] eine Aufspaltung von ca. 300 cm⁻¹ bei Halbwertsbreiten von rund 3000 cm⁻¹. Wenn wir für den Zirkulationsdichroismus GAUSS'- sche Bandenform annehmen, muss unter diesen Umständen erwartet werden, dass durch die weitgehende Überlagerung der beiden Komponenten eine teilweise Kompensation auftritt. Unter vereinfachten Annahmen lässt sich zeigen⁵²), dass dabei die Maximalwerte des CD bis auf einen Zehntel reduziert werden, und gleichzeitig wesentlich auseinander rücken. Experimentell ist diese Aussage wiederum durch Messungen an orientierten Einkristallen bestätigt⁵³). (Wir setzen auch hier wiederum voraus, dass die Messresultate von Kristallen mindestens grössenordnungsmässig auf solche Lösungen übertragen werden dürfen.)

Auf Grund der skizzierten Theorie ist folgendes Resultat für CD und RD im Bereich der langwelligen Absorptionsbande von Komplexen der Symmetrie D_3 zu erwarten:

CD: 2 Banden vergleichbarer Grösse mit verschiedenem Vorzeichen. Der Abstand der Extrema, effektiv in der Grössenordnung von wenigen hundert Wellenzahlen, durch teilweise Überlagerung scheinbar vergrössert.

RD: Überlagerung von 2 benachbarten CE vergleichbarer Grösse mit verschiedenem Vorzeichen. Dies führt qualitativ zu einem RD-Spektrum vom Typ, wie es bei [CoY] oder $[Co en_2 \ ClBr]$ gefunden wird (vgl. Fig. 8 von BRUSHMILLER³⁰)).

Die effektiv gemessenen Kurven für solche Komplexe zeigen dagegen durchwegs, dass die Rotationsstärke der einen Komponente (soweit bis heute überprüfbar der *E*-Komponente) wesentlich grösser ist. Während in CD-Spektren beide Anteile noch getrennt erfassbar sind, scheint im RD-Spektrum ein einfacher CE vorzuliegen, da hier Überlagerungen ganz allgemein wesentlich schwerer erkennbar sind. Aus diesem Grunde erachten wir im Falle der Metallkomplexe die RD-Spektren für eine grobe Charakterisierung sehr gut geeignet, die CD-Spektren sind aber für eine detaillierte Beurteilung unerlässlich.

Qualitativ lässt sich diese Abweichung von der Rotationsstärke vom Verhältnis 1:1 verstehen bei Annahme einer Interkombination der Terme E_a und E_b , wobei man gleichzeitig eine plausible Erklärung für die relativ hohe Rotationsstärke der kurzwelligen Absorptionsbande gewinnt. Wenn wir andererseits in Erweiterung der Theorie von MOFFIT¹) nicht nur das elektrische sondern auch das magnetische Übergangs-Moment mit Hilfe der gestörten Eigenfunktionen formulieren, ergeben sich Beiträge zur Rotationsstärke der Übergänge in E_a und E_b , die allerdings unter den üblichen Annahmen

> $v/\varepsilon \approx 10^{-2}$ v: Trigonaler Feldparameter ε : Anregungsenergie $nd \rightarrow (n + 1)p$

sehr gering sind, vgl.1)⁵¹).

53. Molekelsymmetrie C_2 und C_1 . Während wir bei Molekeln mit der Symmetrie D_3 in Messungen der RD einen dominanten CE feststellen, zeigen Molekeln der Symmetrie C_2 eine Überlagerung von 2 benachbarten CE vergleichbarer Grösse mit verschiedenem Vorzeichen, besonders ausgeprägt, wenn Carboxyl-Liganden vorliegen. Es scheint in einigen Fällen angebracht, ein Störfeld der Symmetrie D_4 oder C_4 als wirksam anzunehmen (z. B. [CoY], [Co en₂ Cl₂], während andere Fälle eher

²⁵) TH. BÜRER, in Vorbereitung.

⁵³) S. F. MASON, persönliche Mitteilung.

mit D_3 -Kristallfeld interpretiert werden können (z. B. [Co en₂ ox]). Schliesslich lassen sich die RD-Spektren von Verbindungen der Symmetrie C_1 durchwegs interpretieren als Überlagerung von mindestens 2 CE, meistens mit gleichem Vorzeichen, gelegentlich mit verschiedenem Vorzeichen (angenähert C_2 -Symmetrie, vgl. BRUSH-MILLER³⁰)).

Messungen des CD an einzelnen dieser Verbindungen ergaben bis zu sechs Komponenten. Wir werden daher nach Erweiterung der experimentellen Daten auf diese Verbindungen detaillierter eingehen.

54. Absolute Konfiguration. Ein wesentlicher Aspekt der Arbeiten über optisch aktive Metallkomplexe besteht in der Untersuchung des Zusammenhangs zwischen RD, CD und absoluter Konfiguration⁵⁴). Auf Grund von RÖNTGEN-Strukturanalysen ist die absolute Konfiguration und die Relation zur RD von [Co en₃] bekannt³¹)⁵⁵):

 Δ [Co en₃] \longrightarrow - CE_(490 nm).

Durch Ligand-Austausch-Reaktionen unter Erhaltung der Konfiguration konnten einige weitere Korrelationen erhalten werden²⁸). Die Annahme, dass Verbindungen, deren dominanter CE das gleiche Vorzeichen besitzt, zur gleichen absoluten Konfiguration gehören, ist dann berechtigt, wenn die Rotationsstärke durch das gleiche Ligandfeld verursacht wird. Dazu ist sicher notwendig, dass dieser dominante CE zur gleichen irreduziblen Darstellung gehört. Dies ist z. B der Fall für³²)⁴⁸):

> [Co en₃], [Co ox₃] dom. CE aus ${}^{1}A_{1} \longrightarrow {}^{1}E_{a}({}^{1}T_{1})$ [Cr en₃], [Cr ox₃], [Cr tartr₃] dom. CE aus ${}^{4}A_{2} \longrightarrow {}^{4}E_{b}({}^{4}T_{2})$

Aus den experimentellen Daten folgt zudem, dass bei den genannten Verbindungen die relative Lage im Termschema immer dieselbe ist:

Co:
$${}^{1}E_{a}({}^{1}T_{1}) < {}^{1}A_{2}({}^{1}T_{1})$$
 Cr: ${}^{4}E_{b}({}^{4}T_{2}) > {}^{4}A_{1}({}^{4}T_{2})$

Dieser Befund ist allerdings noch nicht einwandfrei gesichert. PIPER & CARLIN⁵⁶) z. B. vertreten die Ansicht, dass diese relative Lage der Terme beim Übergang von Trisäthylendiamin-Komplexen zu Trisoxalato-Komplexen umgekehrt wird, da nach Röntgen-Strukturanalyse im ersten Fall ein in Richtung der dreizähligen Achse gestauchtes Oktaeder, im zweiten Fall ein gestrecktes Oktaeder vorliegt. Wir anerkennen das Prinzip der Argumentation, erachten jedoch die verwendeten Daten nicht als genügend genau.

Zusammenfassend erachten wir auch auf diesem Gebiete die experimentelle Basis noch als zu schmal, um existierende und neue Theorien über den Zusammenhang der optischen Aktivität mit der absoluten Konfiguration überprüfen zu können.

Herrn Prof. Dr. Hs. H. GÜNTHARD danken wir für die wohlwollende Förderung dieser Arbeit.

Ferner danken wir dem Schweizerischen Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Projekte Nr. 1938, 1948 und 2357) und der Firma Sandoz AG, Basel, für die gewährte Unterstützung.

⁵⁴⁾ W. KUHN & K. BEIN, Z. phys. Chem. B24, 335 (1934).

⁵⁵⁾ K. NAKATSU, Bull. chem. Soc. Japan 35, 832 (1962).

⁵⁶⁾ T. S. PIPER & R. L. CARLIN, J. chem. Physics 36, 2224, 3330 (1962).

SUMMARY

A short review is given on published rotatory dispersion data of 60 trivalent chromium and cobalt coordination compounds. Own measurements are reported on 16 compounds. The most important facts of theory and interpretation are reviewed.

Laboratorium für physikalische Chemie der Eidg. Technischen Hochschule, Zürich

24. Methämoglobinbildung durch RÖNTGEN-Bestrahlung in Hämolysat und intakten Erythrocyten von verschiedenem Katalasegehalt

von J.P.Heiniger und H. Aebi

(4. XII. 62)

Bei Einwirkung ionisierender Strahlen auf verdünnte Lösungen von Oxyhämoglobin entsteht Methämoglobin¹)²). Dabei kommt es nicht nur zu einem Valenzwechsel des Eisens (Fe^{II} \rightarrow Fe^{III}), sondern auch zur Oxydation verschiedener Gruppen in der Globinkomponente (z. B. -SH)³). Neben Methämoglobin werden auch noch andere Produkte (z. B. Choleglobin) in allerdings wesentlich geringerem Umfang gebildet⁴). Die grosse biologische Bedeutung der Hämine und deren leichte spektrophotometrische Bestimmbarkeit haben es mit sich gebracht, dass Lösungen von Blutfarbstoff (= Hämolysat) und Suspensionen intakter roter Blutzellen ein bevorzugtes Objekt für strahlenbiologische Modellversuche darstellen. Die meist als Mass genommene Methämoglobinbildung hängt a) von der Konzentration der Lösung (bzw. Suspension), b) von der Art der Verteilung (Hämolysat oder intakte Zellen), c) von der Gegenwart strahlenschützend wirkender Enzyme (Katalase, evtl. Glutathion-peroxydase) sowie d) einer Reihe weiterer Versuchsfaktoren ab.

Das Ziel dieser Untersuchungen besteht darin, den Einfluss der unter b) und c) erwähnten Faktoren, d. h. Art der Verteilung und Schutzwirkung der Katalase, auf die strahleninduzierte Methämoglobinbildung zu analysieren. Zu diesem Zweck sind Hämolysatproben und Suspensionen intakter Erythrocyten in verschiedenen Versuchsanordnungen vergleichend untersucht worden. Da nach WARBURG *et al.*⁵) das Ausmass der Methämoglobinbildung bei gegebener Strahlendosis vor allem vom Katalasegehalt abhängt, haben wir für diese Experimente einerseits rote Blutzellen von relativ hohem und anderseits solche von extrem geringem Katalasegehalt ausgewählt. Während früher bei Vergleichen dieser Art z. B. Rattenblut und Entenblut verwendet wurde⁵)⁶), sind unsere Versuche fast durchwegs mit Erythrocyten

¹) H. FRICKE & B. W. PETERSON, Amer. J. Roentgenology 17, 611 (1927); H. LASER, Nature 174, 753 (1954); 176, 361 (1955).

²) E. S. G. BARRON & PH. JOHNSON, Radiat. Research 5, 290 (1956).

³) A. KAJITA, A. HASHIMOTO, T. OKAZAKI & K. KAZIRO, J. Biochemistry 49, 538 (1961).

⁴) K. KAZIRO, G. KIKUCHI, T. OGAWA & M. YAMADA, J. Biochemistry 40, 205 (1953).

⁵⁾ O. WARBURG, W. SCHRÖDER & H. W. GATTUNG, Z. Naturforsch. 15b, 163 (1960).

⁶) K. Kaziro, G. Kikuchi, H. Nakamura & M. Yoshida, Chem. Ber. 85, 886 (1952).